#-------------------------------------------------------------------------------
# Name: Methods of sorting
# Purpose: implements the sortings mentioned by Robert Sedgewick and
# Kevin Wayne, Algorithms 4ed
#
#-------------------------------------------------------------------------------
def selection_sort(a):
for i in range(len(a)):
min = i
for j in range(i+1, len(a)):
if a[j] < a[min]:
min = j
a[i], a[min] = a[min], a[i]
def insertion_sort(a):
for i in range(len(a)):
j = i
while j > 0:
if a[j] < a[j-1]:
a[j], a[j-1] = a[j-1], a[j]
j -= 1
def shell_sort(a):
h = 1
while h <= len(a)/3:
h = 3*h+ 1 # in the test use 4 as increment sequence
while h >= 1:
for i in range(len(a)):
j = i
while j >= h and a[j] < a[j-h]:
a[j], a[j-h] = a[j-h], a[j]
j -= h
h /= 3
def merge_sort(x):
result = []
if len(x) < 2:
return x
mid = int(len(x)/2)
y = merge_sort(x[:mid])
z = merge_sort(x[mid:])
i = 0
j = 0
while i < len(y) and j < len(z):
if y[i] > z[j]:
result.append(z[j])
j += 1
else:
result.append(y[i])
i += 1
result += y[i:]
result += z[j:]
return result
def quick_sort(a):
if len(a) <= 1:
return a
else:
return quick_sort([x for x in a[1:] if x < a[0]]) + [a[0]] \
+ quick_sort([x for x in a[1:] if x >= a[0]])
if __name__ == '__main__':
a = [7, 10, 1, 1, 3, 4, 5, 9, 2, 8]
b = {}
for i in range(1, 6):
b['test'+str(i)] = a[:]
# Test the three simple sortings
insertion_sort(b['test1']) #1
selection_sort(b['test2']) #2
shell_sort(b['test3']) #3
print b
# Test the sortings that requires recursion
print merge_sort(b['test4']) #4
print quick_sort(b['test5']) #5
# Timsort that is native in Python
a.sort() #6
print a
No comments:
Post a Comment